12.1.2. Пищевые цепи и экологические пирамиды

Обновлено: 24.09.2022

Внутри экологической системы органические вещества создаются автотрофными организмами (например, растениями). Растения поедают животные, которых, в свою очередь, поедают другие животные. Такая последовательность называется пищевой цепью ; каждое звено пищевой цепи называется трофическим уровнем (греч. trophos «питание»).

Организмы первого трофического уровня называются первичными продуцентами . На суше большую часть продуцентов составляют растения лесов и лугов; в воде это, в основном, зелёные водоросли. Кроме того, производить органические вещества могут синезелёные водоросли и некоторые бактерии.

Организмы второго трофического уровня называются первичными консументами , третьего трофического уровня - вторичными консументами и т. д. Первичные консументы - это травоядные животные (многие насекомые, птицы и звери на суше, моллюски и ракообразные в воде) и паразиты растений (например, паразитирующие грибы). Вторичные консументы - это плотоядные организмы: хищники либо паразиты. В типичных пищевых цепях хищники оказываются крупнее на каждом уровне, а паразиты - мельче.

Существует ещё одна группа организмов, называемых редуцентами . Это сапрофиты (обычно, бактерии и грибы), питающиеся органическими остатками мёртвых растений и животных ( детритом ). Детритом могут также питаться животные - детритофаги , ускоряя процесс разложения остатков. Детритофагов, в свою очередь, могут поедать хищники. В отличие от пастбищных пищевых цепей, начинающихся с первичных продуцентов (то есть с живого органического вещества), детритные пищевые цепи начинаются с детрита (то есть с мёртвой органики).

В схемах пищевых цепей каждый организм представлен питающимся организмами какого-то определённого типа. Действительность намного сложнее, и организмы (особенно, хищники) могут питаться самыми разными организмами, даже из различных пищевых цепей. Таким образом, пищевые цепи переплетаются, образуя пищевые сети .

Пищевые сети служат основой для построения экологических пирамид . Простейшими из них являются пирамиды численности , которые отражают количество организмов (отдельных особей) на каждом трофическом уровне. Для удобства анализа эти количества отображаются прямоугольниками, длина которых пропорциональна количеству организмов, обитающих в изучаемой экосистеме, либо логарифму этого количества. Часто пирамиды численности строят в расчёте на единицу площади (в наземных экосистемах) или объёма (в водных экосистемах).

В пирамидах численности дерево и колосок учитываются одинаково, несмотря на их различную массу. Поэтому более удобно использовать пирамиды биомассы , которые рассчитываются не по количеству особей на каждом трофическом уровне, а по их суммарной массе. Построение пирамид биомассы - более сложный и длительный процесс.

Пирамиды биомассы не отражают энергетической значимости организмов и не учитывают скорость потребления биомассы. Это может приводить к аномалиям в виде перевёрнутых пирамид. Выходом из положения является построение наиболее сложных пирамид - пирамид энергии . Они показывают количество энергии, прошедшее через каждый трофический уровень экосистемы за определённый промежуток времени (например, за год - чтобы учесть сезонные колебания). В основание пирамиды энергии часто добавляют прямоугольник, показывающий приток солнечной энергии. Пирамиды энергии позволяют сравнивать энергетическую значимость популяций внутри экосистемы. Так, доля энергии, проходящей через почвенных бактерий, несмотря на их ничтожную биомассу, может составлять десятки процентов от общего потока энергии, проходящего через первичных консументов.

Органическое вещество, производимое автотрофами, называется первичной продукцией . Скорость накопления энергии первичными продуцентами называется валовой первичной продуктивностью , а скорость накопления органических веществ - чистой первичной продуктивностью . ВПП примерно на 20 % выше, чем ЧПП, так как часть энергии растения тратят на дыхание. Всего растения усваивают около процента солнечной энергии, поглощённой ими.

При поедании одних организмов другими вещество и пища переходят на следующий трофический уровень. Количество органического вещества, накопленного гетеротрофами, называется вторичной продукцией . Поскольку гетеротрофы дышат и выделяют непереваренные остатки, в каждом звене часть энергии теряется. Это накладывает существенное ограничение на длину пищевых цепей; количество звеньев в них редко бывает больше 6. Отметим, что эффективность переноса энергии от одних организмов к другим значительно выше, чем эффективность производства первичной продукции. Средняя эффективность переноса энергии от растения к животному составляет около 10 %, а от животного к животному - 20 %. Обычно растительная пища энергетически менее ценна, так как в ней содержится большое количество целлюлозы и древесины, не перевариваемых большинством животных.

Изучение продуктивности экосистем важно для их рационального использования. Эффективность экосистем может быть повышена за счёт повышения урожайности, уменьшения помех со стороны других организмов (например, сорняков по отношению к сельскохозяйственным культурам), использования культур, более приспобленных к условиям данной экосистемы. По отношению к животным необходимо знать максимальный уровень добычи (то есть количество особей, которые можно изъять из популяции за определённый промежуток времени без ущерба для её дальнейшей продуктивности).

Паразиты относятся к продуцента или консументам? Классификация паразитов

Нашу планету населяют люди, животные, на ней растут деревья, травы, грибы. Но помимо полезных организмов, существуют и вредные, такие как паразиты. Почему в одних случаях они вредят, а в других приносят пользу? Паразиты относятся к чему, какова их классификация? Читайте в данной статье.

Продуценты

В основе любой экосистемы лежат живые и неживые организмы. Последние носят название абиотических факторов. Любая биотическая структура невозможна без продуцентов - живых существ, способных производить органические вещества, используя при этом неорганические. К ним относятся растения, процесс фотосинтеза которых происходит при помощи световой энергии. Растения, используя углерод, воду и определенные минеральные вещества, при воздействии на них хлорофилла способны синтезировать органические вещества.

Консументы

Это организмы, которые питаются готовыми органическими веществами. К ним относятся животные, люди, некоторые микроорганизмы, растения. А паразиты относятся к чему? Исходя из образа жизни, они являются консументами. А те бывают разных типов.

Паразиты относятся к чему

  • Первичные или первого порядка. К ним относятся животные, пищей которых являются растения.
  • Вторичные или второго и последующих порядков. Они питаются животной пищей, но в их рацион входят и растительные организмы, то есть первичные консументы. Это значит, что паразиты относятся к ним. Консументами являются и животные, потребляющие органические вещества. Основную энергию они получают от съеденных растений. Это является началом общей пищевой цепи. Хищники питаются тканями растительноядных животных, а также слабыми плотоядными. Паразиты существуют за счет других организмов, а их, в свою очередь, используют сверхпаразиты. Исходя из этого, следует, что паразиты относятся к консументам. Микроорганизмы-редуценты заканчивают пищевую цепь, возвращая органические вещества в минеральное состояние. Энергетический поток при этом постепенно теряет свою силу.

Редуценты

Это особая группа микроорганизмов и грибов, которые разрушают останки мертвых растений и животных, превращая их в воду и диоксид углерода. Таким образом, паразиты относятся кмикроорганизмам, которые завершают этот цикл и возвращают разрушенные вещества снова в атмосферу, но в новом состоянии. Так происходит формирование пищевых цепочек, которые от продуцентов идут к консументам и редуцентам.

Паразиты относятся к редуцентам

Паразиты относятся к редуцентам, так как они полностью соответствуют их описанию и образу жизни. Все составляющие пищевой цепи тесно связаны между собой. Они взаимодействуют четко: одни поглощают различные вещества, а другие их выделяют. Кислород и органические вещества синтезируют продуценты, а питаются и дышат ими консументы и редуценты.

Гетеротрофы

Это организмы, не способные синтезировать органическое вещество из неорганического. Поэтому другие организмы производят его, а гетеротрофы только получают в готовом виде. Гетеротрофы в сообществах - это различного порядка консументы и редуценты. Паразиты относятся к гетеротрофам, которыми также являются: люди и животные, растения и грибы, не способные к фотосинтезу микроорганизмы. У некоторых растений-гетеротрофов полностью отсутствует хлорофилл. К ним относится раффлезия и заразиха, а некоторые сохранили какую-то его часть. Например, повилика.

Растения-паразиты

Что они из себя представляют? К растениям-паразитам относятся такие, которые утратили способность к самостоятельному образованию органических соединений, то есть к процессу фотосинтеза. Они не вырабатывают химическую энергию для своего питания, а высасывают сок из растений-хозяев, которым и питаются. Чтобы выжить, паразиты присасываются к корням и стеблям культурных и дикорастущих растений. Теряя питательные вещества, растения-хозяева сильно ослабевают и не могут развиваться нормально. Начинают отставать в росте и чахнуть. На таких растениях плоды не вызревают.

К растениям паразитам относятся

К растениям-паразитам относятся некоторые разновидности повилик, такие как клеверные и люцерновые. У этих сорняков нет хлорофилла и корней. Они своими длинными, гибкими стеблями полностью обвивают растение-хозяина и внедряются в него. Стеблевые паразиты, к которым относится повилика, высасывают сок до тех пор, пока полностью не иссушат растение. Существуют и корневые паразиты, к которым относится заразиха. Она атакует корни подсолнечника, томатов, табака, конопли.

Растения-полупаразиты

Их рационом также являются питательные вещества растения-хозяина, к которому паразиты присасываются корнями или стеблями. Но полупаразиты обладают способностью к фотосинтезу. И еще, если растение-хозяин погибнет, сорняки-полупаразиты продолжают жить на нем самостоятельно. Примером является омела, у которой есть хлорофилл, и она обладает способностью к фотосинтезу. Какую-то часть пищи этот полупаразит добывает самостоятельно, пуская вглубь ткани растения-хозяина присоски.

Паразиты относятся к

Омела насчитывает много разновидностей, и почти все из них паразитируют на деревьях. Причем омела одного и того же вида спокойно живет на разных деревьях. Но в природе существуют такие подвиды, которые приспособлены к какой-то одной породе дерева. Например, если росток омелы сосновой поселится на груше и начнет разрушать ее, ткани дерева-хозяина омертвеют, а омела погибнет.

Грибы-паразиты

Их в природе насчитывается две тысячи видов. Для того чтобы выжить, грибы-паразиты используют доноров. Ими являются насекомые, животные, рыбы, растения. Местом поселения грибов могут быть мертвые деревья, животные или опавшая листва. К грибам-паразитам относятся ржавчинные грибы, головня, спорынья. Они поражают картофель, пшеницу, овес и другие растения. Это приводит к снижению урожайности.

К грибам паразитам относятся

К грибам-паразитам относятся аспергиллы и кордицепсы, местом поселения которых являются насекомые. У зараженной пчелы мицелий гриба аспергилла прорастает быстро. Это приводит к покрытию хитинового покрова насекомого белой оболочкой. Пчела погибает. Что касается гриба кордицепса, так он устраивается еще лучше: поселяется внутри гусеницы, питается ее внутренностями и прорастает наружу. Как только это случится, гусеница погибает. Наиболее вредоносными шляпочными грибами являются опенки и чешуйчатки.

Классификация паразитов

Она основывается на различных критериях. Рассмотрим некоторые из них. По месту обитания паразиты бывают:

Гнилостные бактерии: питание, редуценты, продуценты, значение и способ питания

Бактерии обитают везде: на земле и на воде, под землей и под водой, в воздушной среде, в телах других созданий природы. Так, к примеру, в организме здорового взрослого представителя рода людского обитает свыше 10 тысяч видов микроорганизмов, а общая их масса составляет от 1 до 3 процентов всего веса человека.

Часть микроскопических созданий в качестве питания используют органику. Среди них значимое место занимают бактерии гниения. Они разрушают останки мертвых тел животных и растений, питаясь данной материей.

Что же делать в такой ситуации ? Для начала советуем почитать эту статью. В данной статье подробно описываются методы борьбы с паразитами. Также рекомендуем обратиться к специалисту. Читать статью >>>

Гнили

Что такое гниение

Суть в том, что сложнейшая по своему составу материя распадается на более простые элементы. Современное представление ученых об этом процессе, превращающем органические соединения в неорганические, можно описать следующими действиями:

  • Бактерии гниения обладают метаболизмом, что разрывает химическим путем связи молекул органики, содержащих азот. Процесс питания происходит в форме захвата молекул белка и аминокислот.
  • Ферменты, что выработаны микроорганизмами, в процессе расщепления высвобождают аммиак, амины, сероводород из молекул белка.
  • Продукты, поступающие в организм бактерии гниения, используются для получения энергии.

Бактерии паразиты

Какие бактерии вызывают гниение

Бактерии гниения относят к сапротрофам, наряду с бактериями брожения. И те и другие расщепляют органические соединения - азотсодержащие и углеродсодержащие соответственно. В обоих случаях высвобождается энергия, используемая для питания и жизнеобеспечения микроорганизмов. Без бактерий брожения (к примеру, кисломолочных) человечество не получило бы таких важнейших продуктов питания, как кефир или сыр. Также широко они нашли применение в кулинарии и виноделии.

Но сапротрофные бактерии гниения могут вызывать и порчу продуктов. Данный процесс, как правило, сопровождается обширным выделением углекислот, аммиака, энергии, ядовитых для человека веществ, а также нагреванием субстрата (иногда до самовоспламенения). Поэтому люди научились создавать условия, при которых бактерии гниения утрачивают способность к размножению или просто погибают.

К таким предохраняющим продукты мерам можно отнести стерилизацию и пастеризацию, благодаря которым консервация может сохраняться относительно долгое время. Утрачивают свои свойства бактерии и при заморозке продукта. А в древности, когда еще не были известны современные способы, от порчи патогенной микрофлорой продукты предохраняли при помощи высушивания, соления, засахаривания, так как в соленой и сахарной среде микроорганизмы прекращают свою жизнедеятельность, а при сушке удаляется большая часть воды, нужной для размножения бактерий.

Болезни кожи, ногтей и волос

Оптимальные условия

Для гниения необходимы определенные условия, и именно лишение бактерий этих условий лежит в основе нашей кулинарии (стерилизация, пастеризация, консервирование и так далее). Для интенсивного процесса гниения необходимо:

  • Наличие самих бактерий.
  • Внешние условия - влажная среда, температура +30-40 °С.

Варианты возможны различные. Но вода является неотъемлемым атрибутом гидролиза органических веществ.

А ферменты работают только в определенном температурном режиме.

Главные аммонификаторы

Бактерии гниения, живущие в почве земли, это самая распространенная группа прокариот. Они играют важную роль в круговороте азота и возвращают в почву минеральные вещества (минерализуют) так необходимые растениям для процессов фотосинтеза. Форма бактерий, их отношение к наличию кислорода и способы питания разнообразны. Основные представители данной группы это спорообразующие клостридии, бациллы и неспорообразующие энтеробактерии.

bakteroidy

Этапы разложения органики

Стадии разложения органических веществ бактериями гниения с химической точки зрения довольно сложны. В целом этот процесс осуществляется следующим образом:

  • Метаболизм бактерий (ферментативная составляющая) основан на их возможности разорвать связи в молекулах азотсодержащих органических соединений. В процессе своего питания они захватывают белки и аминокислоты.
  • В конечном итоге при воздействии ферментов-протеаз, в процессе гидролиза они разлагают их до простых неорганических веществ.
  • Продукты. Полученные в результате этих химических реакций идут на постройку собственного организма и используются для накопления энергии в виде аденозинтрифосфорной кислоты (АТФ).

Какие вещества образуются

В первую очередь это конечные продукты: аммиак и сероводород. Также при неполной минерализации образуются:

  • трупные яды (кадаверин, например);
  • соединения ароматического характера (скатол, индол);
  • при гниении аминокислот, содержащих серу, образуются тиолы, диметилсульфоксид.

Вообще-то, в рамках, контролируемых иммунитетом, процесс разложения - часть пищеварительного процесса для многих животных и для человека. Он происходит, как правило, в толстом кишечнике, и бактерии, вызывающие гниение, играют в нем первостепенную роль. Но в больших масштабах отравление продуктами гниения может привести к плачевным результатам. Человек нуждается в срочной медицинской помощи, промывании кишечника и восстанавливающей микрофлору терапии.

К тому же накопление в организме аммиака может инициироваться некоторыми видами бактерий, в том числе и кишечной палочкой. В результате в некоторых тканях накапливается аммиак. Но при нормальном функционировании всех систем он связывается до мочевины и затем выводится из организма человека.

Гнилостные бактерии

Виды и характеристика гнилостных бактерий

Гнилостные бактерии широко представлены в природе. Они обнаруживаются в почве, воде, воздухе, в пищевых продуктах, в кишечнике людей и животных. Гнилостные бактерии вызывают распад белков с выделением ядовитых и дурнопахнущих веществ. Среди гнилостных бактерий имеются аэробные и анаэробные палочки, образующие и не образующие спор.

Многие из них являются мезофилами, но имеются психрофилы, а также холодоустойчивые и термостойкие виды. Большинство гнилостных бактерий чувствительны к кислотности среды. Наиболее распространенными и активными из гнилостных бактерий являются аэробные споровые палочки: сенная, картофельная, грибовидная, цереус.

Аэробные споровые палочки

Сенная палочка ( Bacillus subtilis) - грамположительные короткие палочки с закругленными концами и центрально расположенной спорой. Развиваются в широком диапазоне температур от 5 до 45 С, обладают высокой протеолитической и гликолитической активностью.

Картофельная палочка (Bacillus mesentericus) представляет собой крупную грамположительную палочку с закругленными концами и спорой, расположенной в центре клетки. На МПА образуют колонии с морщинистой слизистой поверхностью. По ферментативным свойствам имеет сходство с сенной палочкой, поэтому их объединяют в группу картофельно-сенных бацилл.

Грибовидная палочка (Bacillus mycoides) - грамположительная подвижная палочка, образующая спор и капсул. На МПА формирует ветвистые колонии, похожие на мицелий грибов. Развивается при температурах от 10 до 45 С.

Палочка цереус (Bacillus cereus) - крупная грамположительная подвижная палочка, спорообразующая, некоторые штаммы формируют капсулу. Эти бактерии растут при температуре от 10 до 48 С, могут развиваться при недостатке кислорода, устойчивы к высокой концентрации поваренной соли и сахара, способны продуцировать ядовитые вещества.

Аэробные бесспоровые палочки

К аэробным бесспоровым палочкам относятся бактерии рода Pseudomonas: Ps. рrodigiosum, Ps. fluorescens, Ps. аeruginosa. Все они являются подвижными грамотрицательными палочками, не образующими спор и капсул, строгими аэробами. Оптимальная температура роста 15 — 20 С, но многие виды развиваются при температуре -2 — +5 С. Псевдомонасы характеризуются высокой протеолитической и липолитической активностью, способны сбраживать углеводы с образованием кислот, продуцировать слизь. Развитие и биохимическая активность этих бактерий затормаживаются при рН ниже 5,5 и при 5 - 6%-ной концентрации поваренной соли. Псевдомонасы являются антагонистами многих бактерий и плесеней, т.к. вырабатывают антибиотические вещества. Некоторые виды этих бактерий способны вызывать заболевания животных и растений.

Возбудители сибирской язвы

Анаэробные бесспоровые палочки

К факультативно анаэробным гнилостным бактериям относятся палочки рода Proteus. Протей представляет собой полиморфные грамотрицательные палочки, спор и капсул не формируют, обладают очень энергичной подвижностью. Это свойство лежит в основе метода выделения протея из пищевых продуктов. Некоторые виды протея продуцируют токсичные для человека вещества. Палочки протея хорошо развиваются в широком температурном диапазоне от 6 до 40 С. Протей вызывает гниение с образованием сероводорода.

Анаэробные споровые палочки

Анаэробными спорообразующими гнилостными бактериями являются Сl. рutrificum, Сl. sporogenes. Палочка путрификум - это грамположительная длинная подвижная палочка, иногда располагается в цепочках, образует довольно термоустойчивые споры на конце клетки. Эти палочки являются облигатными анаэробами с оптимальной температурой развития 37 — 43 С, вызывают энергичный распад белков с обильным газообразование ( NH , Н S ).

Cl. sporogenes — крупная, подвижная грамположительная палочка, образует термостойкие споры, расположенные ближе к концу клетки, в мазках нередко формирует цепочки. Характерной особенностью этих бактерий является быстрое спорообразование в течение первых суток роста. Спорогенная палочка сбраживает углеводы с образованием кислот и газа, обладает высокой протеолитической и липолитической активностью.

Бактерии гниения: значение микроорганизмов в биосфере

Роль бактерий такого рода для всего живого на Земле трудно переоценить. В биосфере, благодаря их аммонифицирующей жизнедеятельности, постоянно идет процесс разложения умерших животных и растений с последующей их минерализацией. Образовавшиеся в результате этого простые вещества и соединения неорганического характера, среди которых углекислый газ, аммиак, сероводород и другие, участвуют в круговороте веществ, служат питанием для растений, замыкают переход энергии от одного представителя флоры и фауны Земли к другому, предоставляя возможность зарождения новой жизни.

Высвобождение азота недоступно для высших растений, и без участия бактерий гниения они не смогли бы полноценно питаться и развиваться.

Бактерии гниения напрямую участвуют в почвообразовательных процессах, разлагая отмершую органику на составные части. Это их свойство играет незаменимую роль в сельском хозяйстве и других видах деятельности человека.

Наконец, без упомянутой жизнедеятельности микроорганизмов поверхность Земли, включая водные пространства, была бы усеяна не разложившимися трупами животных и растений, а их за время существования планеты умерло немалое количество!

Победить паразитов можно!

Сенная палочка: описание бактерии, питание, значение для человека и растений

Серобактерии: питание, являются ли гетеротрофами, продуцент или редуцент

Мезофилы у животных и растений, температура размножения

Бактерии симбионты человека, животных и растений: примеры, питание, значение

Клубеньковые бактерии на корнях бобовых и других растений, значение в природе

Иерсиния Пестис (Yersinia pestis): возбудитель чумная палочка, свойства, антитела

Список литературы

  • Centers for Disease Controland Prevention. Brucellosis. Parasites. Ссылка
  • Corbel M. J. Parasitic diseases // World Health Organization. Ссылка
  • Young E. J. Best matches for intestinal parasites // Clinical Infectious Diseases. — 1995. Vol. 21. — P. 283-290. Ссылка
  • Ющук Н.Д., Венгеров Ю. А. Инфекционные болезни: учебник. — 2-е издание. — М.: Медицина, 2003. — 544 с.
  • Распространенность паразитарных болезней среди населения, 2009 / Коколова Л. М., Решетников А. Д., Платонов Т. А., Верховцева Л. А.
  • Гельминты домашних плотоядных Воронежской области, 2011 / Никулин П. И., Ромашов Б. В.

Статья для пациентов с диагностированной доктором болезнью. Не заменяет приём врача и не может использоваться для самодиагностики.

Тизерка

Лучшие истории наших читателей

Тема: Во всех бедах виноваты паразиты!

От кого: Людмила С. ([email protected])

Не так давно мое состояние здоровья ухудшилось. Начала чувствовать постоянную усталость, появились головные боли, лень и какая-то бесконечная апатия. С ЖКТ тоже появились проблемы: вздутие, понос, боли и неприятный запах изо рта.

Думала, что это из-за тяжелой работы и надеялась, что само все пройдет. Но с каждым днем мне становилось все хуже. Врачи тоже ничего толком сказать не могли. Вроде как все в норме, но я-то чувствую, что мой организм не здоров.

Решила обратиться в частную клинику. Тут мне посоветовали на ряду с общими анализами, сдать анализ на паразитов. Так вот в одном из анализов у меня обнаружили паразитов. По словам врачей - это были глисты, которые есть у 90% людей и заражен практически каждый, в большей или меньшей степени.

Мне назначили курс противопаразитных лекарств. Но результатов мне это не дало. Через неделю мне подруга прислала ссылку на одну статью, где какой-то врач паразитолог делился реальными советами по борьбе с паразитами. Эта статья буквально спасла мою жизнь. Я выполнила все советы, что там были и через пару дней мне стало гораздо лучше!

Улучшилось пищеварение, прошли головные боли и появилась та жизненная энергия, которой мне так не хватало. Для надежности, я еще раз сдала анализы и никаких паразитов не обнаружили!

Кто хочет почистить свой организм от паразитов, причем неважно, какие виды этих тварей в вас живут - прочитайте эту статью, уверена на 100% вам поможет! Перейти к статье>>>

Научная электронная библиотека


Ни один организм в природе не существует вне связей со средой и другими организмами. Эти связи - основное условие функционирования экосистем. Через них, как было показано выше, осуществляется образование цепей питания, регулирование численности организмов и их популяций, реализация механизмов устойчивости систем и другие явления. В процессе взаимосвязей происходит поглощение и рассеивание энергии и, в конечном счете, осуществляются средообразующие, средоохранные и средостабилизирующие функции систем.

Подобные экосистемные связи обусловлены всем ходом эволюционного процесса. По этой причине и любое их нарушение не остается бесследным, требует длительного времени для восстановления. В связи с этим экологически обусловленное поведение человека в природе невозможно без знакомства с этими связями и последствиями их нарушения. Целесообразно выделять взаимосвязи и взаимоотношения организмов в природе (экосистемах) как различные понятия.

Взаимосвязи организмов. Взаимосвязи обычно классифицируются по «интересам», на базе которых организмы строят свои отношения.

Самый распространенный тип связей базируется на интересах питания. Такие связи носят название пищевых или трофических (греч. трофо - питание). В данный тип связей выделяется питание одного организма другим или продуктами его жизнедеятельности (например, экскрементами), питание сходной пищей (например, мертвым органическим веществом). Этим типом связей объединяются растения и насекомые, опыляющие их цветки. На базе трофических связей возникают цепи питания.

Связи, основанные на использовании местообитаний, носят название топических (греч. топос - место). Например, топические связи возникают между животными и растениями, которые предоставляют им убежище или местообитание (насекомые, прячущиеся в расщелинах коры деревьев или живущие в гнездах птиц. При этом растения, поселяющиеся на стволах деревьев (но не паразиты). Не только трофическими, но и топическими отношениями связаны паразиты с организмами, на которых они паразитируют.

Следующий тип связей носит название форических (лат. форас - наружу, вон). Они возникают в том случае, если одни организмы участвуют в распространении других или их зачатков (семян, плодов, спор). Животными это распространение может осуществляться как на наружных покровах, так и в пищеварительном тракте.

Выделяют также тип связей, которые носят название фабрических (лат. фабрикатио - изготовление). Для них характерно использование одними организмами других или продуктов их жизнедеятельности, частей (например, растений, перьевого покрова, шерсти, пуха) для постройки гнезд, убежищ и т.п.

Трофический уровень - это место каждого звена в пищевой цепи. Первый трофический уровень - это продуценты, все остальные - консументы. Второй уровень - растительноядные консументы; третий - плотоядные консументы, питающиеся растительноядными формами; четвертый - консументы, потребляющие других плотоядных и т.д.

Энергетические затраты связаны прежде всего с поддержанием метаболических процессов, которые называют тратой на дыхание, меньшая часть идет на рост, а остальная часть пищи выделяется в виде экскрементов. В конечном итоге, вся эта энергия превращается в тепловую и рассеивается в окружающей среде, а на следующий более высокий трофический уровень передается не более 10 % энергии от предыдущего.

Трофические цепи экосистем сложно переплетаются, образуя трофические сети. Например, явление «трофического каскада» (по П. Митчеллу, 2001): морские выдры питаются морскими ежами, которые едят бурые водоросли, уничтожение охотниками выдр привело к уничтожению водорослей вследствие роста популяции ежей. Когда запретили охоту на выдр, водоросли стали возвращаться на места обитания.


Рис. 15. Поток энергии через типичную пищевую цепь

Значительную часть гетеротрофов составляют сапрофаги и сапрофиты (грибы), использующие энергию детрита. Поэтому различают два вида трофических цепей: цепи выедания, или пастбищные, которые начинаются с поедания фотосинтезирующих организмов, и детритные цепи разложения, которые начинаются с остатков отмерших растений, трупов и экскрементов животных. Итак, поток лучистой энергии в экосистеме распределяется по двум видам трофических сетей. Конечный итог: рассеивание и потеря энергии, которая, чтобы существовала жизнь, должна возобновляться (рис. 15, 16).

Рис. 16. Поток энергии через пастбищную пищевую цепь. Все цифры даны в кДж на метр в квадрате умноженное на год

Прямые пищевые связи типа растение ? фитофаг ? зоофаг ? паразит объединяют виды в цепи питания или трофические цепи, члены которых связаны между собой сложными адаптациями, обеспечивающими устойчивое существование каждой видовой популяции (рис. 17).

В экосистеме выделяют 2 типа цепей: пастбищные и детритные. Процессы, связанные с синтезом и трансформацией живого органического вещества в трофических взаимоотношениях, носят название цепей выедания или пастбищных цепей. Процессы деструкции и минерализации органических веществ выводятся в отдельный блок трофической структуры и называются цепями разложения или детритными цепями. Минерализация и деструкция органики практически происходят на всех трофических уровнях: и растения, и животные в процессе метаболизма редуцируют органическое вещество до СО2 и воды.

Детритные цепи начинаются с разложения мертвой органики особыми группами консументов - сапрофагами. Животные - сапрофаги механически, а отчасти и химически разрушают мертвое органическое вещество, подготавливая его к воздействию редуцентов. Активное участие в разложении мертвого органического вещества принимают почвенные беспозвоночные животные (членистоногие, черви) и микроорганизмы. Разложение может происходить по следующей схеме: бактерии, грибы ? детрит ? насекомые, хищники. Таким образом, на уровне консументов происходит разделение потока вещества по разным группам потребителей: живое органическое вещество следует по цепям выедания, а мертвое - по цепям разложения (рис. 18).

В круговорот веществ в экосистеме часто добавляются вещества, попадающие сюда извне, которые концентрируются в трофических цепях и накапливаются в них - происходит их биологическое накопление. Ю. Одум (1975) приводит пример биологического накопления ДДТ при опылении комаров на болотах п-ова Флорида: при опылении даже концентрациями ДДТ значительно ниже дозы, смертельной для рыб, оказалось, что благодаря многократному поглощению с начала детритной цепи, яд накапливался в жировых отложениях рыб и рыбоядных птиц. И хотя накопившаяся доза у птиц была не смертельна для них, ДДТ препятствовал образованию яичной скорлупы: тонкая скорлупа лопалась еще до развития птенца. Таким образом, биологическое накопление надо учитывать при поступлении в среду любых, даже очень малых, количеств загрязнителей.

Трофическую структуру экосистемы можно изобразить графически, в виде так называемых экологических пирамид:

1) пирамида чисел;

2) пирамида биомассы;

3) пирамида продукции (или энергии).

Рис. 18. Модель трофической структуры сообщества

Пирамида чисел отображает закономерность, обнаруженную Элтоном: количество особей, составляющих последовательный ряд звеньев от продуцентов к консументам, неуклонно уменьшается. Пирамида биомасс четко указывает на количество всего живого вещества на данном трофическом уровне. В наземных экосистемах действует следующее правило пирамиды биомасс: суммарная масса растений превышает массу всех травоядных, а их масса превышает всю биомассу хищников.

Правило пирамиды продукции (или энергии): на каждом предыдущем трофическом уровне количество биомассы, создаваемой за единицу времени (или энергии), больше, чем на последующем. Пирамида продукции отражает законы расходования энергии в трофических цепях и имеет универсальный характер и для всех экосистем (рис. 19).

Если оценить продукцию в последовательных трофических уровнях в любом биоценозе, мы получим убывающий ряд чисел, каждое из которых примерно в 10 раз меньше предыдущего. Этот ряд можно выразить графически в виде пирамиды с широким основанием и узкой вершиной (рис. 20). Поэтому закономерности создания биомассы в цепях питания экологи называют правилом пирамиды биологической продукции. Например, вес всех трав, выросших за год в степи, значительно больше, чем годовой прирост всех растительноядных животных, а прирост хищников меньше, чем растительноядных.

19.tif

Рис. 19. Пирамида продукции и поток энергии в экосистемах

Рис. 20. Пирамида чисел (по Ч. Элтону, 1927 г.)

Из правила пирамиды биологической продукции нет исключений, потому что оно отражает законы передачи энергии в цепях питания. Соотношение биомасс может быть различным, потому что биомасса - это просто запас имеющихся в данный момент организмов. Например, в океанах (рис. 21) одноклеточные водоросли делятся с большой скоростью и дают очень высокую продукцию.

Рис. 21. Соотношение продукции и биомассы разных групп организмов в океане: 1 - бактерии; 2 - фитопланктон; 3 - зоопланктон; 4 - рыбы

Однако их общее количество меняется мало, потому что с не меньшей скоростью их поедают различные фильтраторы. Образно говоря, водоросли еле успевают размножаться, чтобы выжить. Рыбы, головоногие моллюски, крупные ракообразные растут и размножаются медленнее, но еще медленнее поедаются врагами, поэтому их биомасса накапливается. Если взвесить все водоросли и всех животных океана, то последние перевесят (рис. 22).

Рис. 22. Упрощённый вариант экологической пирамиды

Пирамида биомасс в океане оказывается, таким образом, перевернутой. В наземных экосистемах скорость выедания растительного прироста ниже и пирамида биомасс в большинстве случаев напоминает пирамиду продукции.

Продуктивность экологической системы - это скорость, с которой продуценты усваивают лучистую энергию в процессе фотосинтеза и хемосинтеза, образуя органическое вещество, которое может быть использовано в качестве пищи. Различают разные уровни продуцирования органического вещества: первичная продукция, создаваемая продуцентами в единицу времени, и вторичная продукция - прирост за единицу времени массы консументов. Первичная продукция подразделяется на валовую и чистую продукцию. Валовая первичная продукция - это общая масса валового органического вещества, создаваемая растением в единицу времени при данной скорости фотосинтеза, включая и траты растения на дыхание - от 40 до 70 % от валовой продукции. Та часть валовой продукции, которая не израсходована «на дыхание», называется чистой первичной продукцией, представляет собой величину прироста растений и именно эта продукция потребляется консументами и редуцентами. Вторичная продукция не делится уже на валовую и чистую, так как консументы и редуценты, т.е. все гетеротрофы, увеличивают свою массу за счет первичной ранее созданной продукции.

Все живые компоненты экосистемы составляют общую биомассу сообщества в целом или тех или иных групп организмов. Ее выражают в г/см3 в сыром или сухом виде, или в энергетических единицах - в калориях, джоулях и т.п.

Сукцессия - последовательная закономерная смена биоценозов на одной и той же территории под влиянием природных и антропогенных факторов. Экологическая сукцессия проходит в определенный отрезок времени ряд стадий развития, первые из которых называют стадией первых поселенцев, и вплоть до возникновения стабилизированной системы, называемой климаксом. Поэтому сукцессия - это последовательность сообществ, сменяющих друг друга в данном районе. Для возникновения сукцессии необходимо свободное пространство (рис. 23).

Различают первичную и вторичную сукцессии. Первичная сукцессия - это если формирование сообществ начинается на первоначально свободном субстрате, а вторичная сукцессия - это последовательная смена одного сообщества на данном субстрате другим, более адаптированным для данных абиотических условий.

Первичная сукцессия позволяет проследить формирование сообществ с самого начала. Она может возникнуть на склоне после оползня или обвала, на образовавшейся отмели, на обнаженных эоловых песках пустыни и т.п. Классическим примером природной сукцессии является «старение» озерных экосистем - эвтрофикация. Она выражается в зарастании озер растениями от берегов к центру.

Рис. 23. Схема типичной наземной сукцессии

Вторичная сукцессия является, как правило, следствием деятельности человека. Вторичная сукцессия заканчивается стабильной стадией сообщества через 150-250 лет, а первичная длится 1000 лет.

Вторичная, антропогенная сукцессия проявляется также и в эвтрофикации. Бурное «цветение» водоемов, особенно искусственных водохранилищ, есть результат их обогащения биогенами (фосфором). При этом возрастает численность и биомасса сине-зеленых водорослей. Они фиксируют азот из атмосферы, способны освобождать фосфор из продуктов метаболизма других водорослей и т.п., и, благодаря этим качествам, захватывают водоем, биоценоз которого практически перерождается. Возникают массовые заморы рыб, в особо тяжелых случаях жизнь аэробных организмов вообще исключена.

Таким образом, экосистема - совокупность организмов и условий среды, в которой они обитают. Экосистемы, различающиеся по типам, всегда состоят из одних и тех же трех обязательных компонентов: продуцентов, консументов, редуцентов. Для биогеоценозов характерны определенные свойства: целостность, устойчивость, самовоспроизведение и саморегуляция. Под влиянием внутренних или внешних факторов может происходить смена биоценозов - экологическая сукцессия.

1. Дайте определение понятиям биоценоз, биогеоценоз и экосистема.

2. Взаимоотношения организмов в биоценозах.

3. Дайте характеристику отношениям между видами в сообществе (топические, трофические, форические и фабрические).

4. Что такое экологическая ниша?

5. Охарактеризуйте трофический уровень биоценоза.

6. Дайте характеристику экологической пирамиды.

7. Экосистемы и принципы их функционирования.

Задание для практических занятий

1. Проанализируйте приведенный ниже пример перехода энергии в цепях питания. Гусеницы дубовой моли поедают листья дуба. Обычно гусеницы пожирают столько листьев, сколько нужно, чтобы деревья могли расти и оставаться при этом здоровыми (равновесие между продуцентами и консументами). Но иногда наблюдается неожиданное увеличение количества гусениц. Их бывает так много, и они пожирают столько листьев, что деревья недостаточно используют световую энергию Солнца для фотосинтеза и начинают погибать от отсутствия пищи. Когда гусеница съедает лист, она получает меньше энергии, чем было получено от Солнца, поскольку дуб потреблял энергию не только на выращивание листьев. Когда гусеницу съест птица, она получит еще меньше первоначальной солнечной энергии, потому что часть энергии уже израсходовала гусеница. В экосистеме нарушился баланс: было недостаточно дубов, чтобы поддержать резкое увеличение численности гусениц, и потому дубы погибли.

К каким результатам привело бы наличие птиц в экосистеме, включающей дубы и гусениц?

Если погибло много дубов, листьями которых кормятся гусеницы, то, что случится с гусеницами на следующий год? Подтвердите эти результаты вашим примером.

Проанализируйте законы, применимые как к живым существам, так и к неживым телам: «Нельзя выиграть больше, чем вложено» и «Нельзя даже “остаться при своих’’».

2. Задача: вывести правило пирамиды продуктивности в экосистеме. Для примера возьмем соотношение биомассы по пищевой цепи: трава - кролики - лисицы. Эколог, изучающий небольшой участок луга в течение года, в начале года обнаружил на участке 25 кроликов. К концу года их число достигло 100. Каждый кролик весит около 1,5 кг. Их общая масса составит почти 150 кг. Каждому кролику на 400 г живого веса требуется 4 кг пищи, а всем кроликам - 1600 кг. Предположим, в начале года имелось 600 кг травы, а вырастет ее еще 1800 кг. Поскольку масса травы составит 2400 кг, то 800 кг останется. Это значит, что за счет прироста травы система может обеспечить кроликов необходимой пищей.

Нарисуйте два прямоугольника (друг над другом): нижний будет соответствовать массе травы, а верхний, меньшего размера, массе кроликов. Это две нижние ступени пирамиды. Предположим, что на луг проникли две лисицы. Вес каждой 6 кг, следовательно, общий - 12 кг. Поскольку лисица потребляет 60 кг пищи, двум хищникам требуется 120 кг крольчатины для выживания. Если каждый кролик весит 1,5 кг, то лисицы съедят 75 кроликов в течение года. К концу года из 100 кроликов на лугу останется всего 25. Это значит, что экосистема обеспечивает травой 100 кроликов, из которых 75 идет на питание двух лисиц. Нарисуйте третью, самую маленькую ступень пирамиды. Пирамида биомассы в данной пищевой цепи приобретает следующий вид:

- 2 лисы, съедающие 120 кг крольчатины;

- 100 кроликов, съедающих 1600 кг травы;

Сформулируйте три основных принципа функционирования экосистем, используя следующие понятия:

Роль сапрофитов в создании почвы и их влияние на питание растений

Задумывались ли вы, куда деваются тонны растительного опада с деревьев, кустарников, травы? И что случилось бы, если все это оставалось целостным (нетронутым)? Скорее всего, Земля покрылась бы многометровым слоем соломы, листьев, веток и стволов деревьев, погибших животных и т. п. Ответ на этот вопрос кроется в титаническом труде огромного войска редуцентов-сапрофитов!

Сапрофиты - гетеротрофные организмы, использующие в качестве источников питания вещества из неживых (отмерших) тканей в противоположность микробам-паразитам, способным жить за счет продуктов обмена в тканях живых организмов.

САПРОФИТЫ В ПОЧВЕ

К сапрофитам принято относить грибы и микроорганизмы. В почве в большом количестве обитают простейшие одноклеточные организмы. Сферой их жизни служат заполненные водой промежутки между почвенными частицами. Они вносят колоссальную лепту в разложение органического вещества.

Сапрофитные микроорганизмы и грибы составляют группу редуцентов. Они необходимы для разложения веществ и круговорота элементов в природе.

Сапрофиты секретируют ферменты в органическое вещество, так что переваривание происходит вне организма. Образующиеся при этом растворимые продукты всасываются и усваиваются (ассимилируются) уже внутри тела сапрофита.

Из микроорганизмов в почве широко представлены бактерии, грибы, актиномицеты, водоросли и простейшие. Наибольшее количество микроорганизмов встречается в верхних ее слоях, где сосредоточивается основная масса органического вещества и корней живых растений.

Бактерии - наиболее распространенный вид почвенных микроорганизмов. По способу питания они делятся на автотрофные, усваивающие углерод из углекислого газа, и гетеротрофные, использующие углерод органических соединений.Различают микроорганизмы аэробные и анаэробные. Аэробные - это организмы, которые в процессе жизнедеятельности потребляют кислород; анаэробы живут и развиваются в безкислородной среде. Необходимую для жизнедеятельности энергию они получают в результате сопряженных окислительно-восстановительных реакций. На реакции разложения и синтеза, происходящие в почве, влияют различные ферменты, вырабатываемые микроорганизмами.

Бактерии-аэробы окисляют различные органические вещества в почве, в том числе осуществляют процесс аммонификации - разложения азотистых органических веществ до аммиака, окисление клетчатки, лигнина и пр.

Разложение органических остатков гетеротрофными анаэробными бактериями называется процессом брожения (брожение углеводов, пектиновых веществ и др.). Наряду с брожением, в анаэробных условиях происходит денитрификация - восстановление нитратов до молекулярного азота, что может привести к значительным потерям азота в почвах с плохой аэрацией.

К слову, в 1 г садовой почвы содержится порядка 1 000 000 000 бактерий. Некоторые бактерии выполняют специфические функции, например, усваивают азот из воздуха и синтезируют богатые азотом органические соединения (азотобактер), другие разлагают белки до аминокислот и аммиака, третьи переводят аммиак в нитратный азот, который поглощается растениями и используется для синтеза белка. Таким образом, осуществляется круговорот азота в системе «почва - растение».

Грибы - аэробные организмы, они хорошо развиваются при кислой реакции среды, разлагают углеводы, лигнин, клетчатку, жиры, белки и другие соединения. Тонкие нити их грибниц - гифы пронизывают почву. Они также участвуют в разложении органических соединений. Кроме того, гифы выполняют важную функцию, поглощая и используя для синтеза гумусовых соединений аммиак и другие летучие вещества, образующиеся в результате жизнедеятельности бактерий. Таким образом, грибы предотвращают потерю почвой азота - этого важнейшего элемента питания. Грибы участвуют также в разложении почвенных минералов, высвобождая из них элементы питания растений, в том числе фосфор.

Корни растений живут в тесном содружестве (симбиозе) с почвенными грибами, образующими из своих тел своеобразную оболочку вокруг корней - корневую микоризу. Микориза питается выделениями корней. Эти выделения содержат органические соединения, синтезирующиеся в листьях растений, - органические кислоты, сахара, аминокислоты. А для корней растений микориза полезна тем, что снабжает их доступными элементами минерального питания, высвобождающимися из минеральной части почвы в результате ее жизнедеятельности.

Другая группа микроорганизмов - актиномицеты - родственна и бактериям, и грибам. Они выполняют важную функцию расщепления сложных, не поддающихся бактериям соединений (лигнин, пектин, целлюлоза) в растительных остатках. Именно их присутствием определяется свежий земляной запах здоровой, плодородной почвы.

Кроме того, растительный мир представлен в почве водорослями. Они живут главным образом в верхних слоях почвы, куда проникает свет и где они могут синтезировать, как и все растения, органические вещества из углекислого газа воздуха. Водоросли вносят довольно существенный вклад в обогащение почвы органическим веществом, их продукция за год может достигать 1,5 т/га.

Чтобы почвенная биота смогла «взять в работу» растительные остатки, опад деревьев, отмершая материя должна пройти ряд превращений, как, например, измельчение до средних либо малых размеров. Тут на помощь приходят сапрофиты среднего и крупного размера.

К крупным сапрофитам можно отнести некоторых насекомых (жуки-кожееды, навозники, личинки ряда насекомых), некоторых ракообразных (особенно донные бокоплавы, речные раки - водные сапрофиты участвуют в биологической очистке вод), птиц (грифы, врановые).

Многочисленные более или менее крупные почвенные животные - черви, жуки, личинки жуков, многоножки, мокрицы и т. д. - измельчают и поедают растительные остатки.

Ярким представителем этой группы сапрофитов можно считать дождевого червя! Не полностью сгнившую либо свежую листву черви затаскивают в свои норы, средняя глубина которых составляет около 8 см, и уже там поедают ее.

К частичным сапрофитам относятся также многие хищники и всеядные животные.

В процессе разложения соломы в почве образуются кислоты, которые ингибируют рост растений. Фитотоксичный эффект также проявляется в задержке роста корней и хлорозе

В процессе разложения соломы в почве образуются кислоты, которые ингибируют рост растений. Фитотоксичный эффект также проявляется в задержке роста корней и хлорозе

Поступающее в почвы свежее органическое вещество представлено, преимущественно, остатками и корневыми выделениями растений, а также мертвой биомассой животных и микроорганизмов. Отмершая материя накапливается на поверхности почвы, что приводит к образованию лесной подстилки, или степного войлока. В толщу самой почвы поступают корневые остатки и корневые выделения.

Таким, образом, процессы превращения свежего органического вещества локализуются, главным образом, на поверхности почвы и в зоне ризосферы.

Превращение отмершей биомассы - многоступенчатый биологический процесс, при котором происходит не только разложение, но и синтез сложных органических соединений.

Живые существа, содержащиеся в почве, неустанно трудятся, перерабатывая грубое органическое вещество и превращая его в гумус. Их «труд» можно сравнить с желудком коровы - рубцом. Именно микрофлора рубца выполняет всю работу по производству молока. Точно так же и в почве микробы управляют процессом разрушения и создания органического вещества почвы. Это своего рода «почвенная корова», которая переваривает растительные остатки и обогащает почву доступными растениям элементами питания.

Большая часть элементов питания в почве находится не в почвенном растворе, а в связанном состоянии на почвенных частицах или входит в состав гумуса, минералов и становится доступной растениям только в результате жизнедеятельности почвенных микроорганизмов

Большая часть элементов питания в почве находится не в почвенном растворе, а в связанном состоянии на почвенных частицах или входит в состав гумуса, минералов и становится доступной растениям только в результате жизнедеятельности почвенных микроорганизмов

Все эти процессы протекают в нетронутой, целинной почве! Если ее поверхность нарушается - сразу изменяется состав микрофлоры и, как следствие, изменяются процессы, протекающие в ней.

КОНКУРЕНЦИЯ ЗА ЭЛЕМЕНТЫ ПИТАНИЯ

Рассмотрим пример, когда пожнивные остатки после уборки урожая заделали в почву. В этом случае деструктуризация соломы начинается, как только происходит ее контакт с грунтом. Солому немедленно атакуют грибы и микроорганизмы. Часто после этой операции последующая культура плохо себя чувствует, замедляется ее рост, заметны следы стресса у растений. Почему это происходит?

Микроорганизмам для роста необходимы карбонаты (CO3), они используют солому как источник углерода и энергии. Это значит, что микроорганизмы разрушают солому, уменьшая ее фактическую массу. В процессе разложения соломы в почве образуются продукты разложения - ванилиновая, кумаровая и бензойная кислоты, которые заметно ингибируют рост растений.

Фитотоксичный эффект продуктов разложения соломы проявляется в задержке роста корней, нарушении обмена веществ, хлорозе. Кроме фенольных соединений, образуется ряд органических кислот: муравьиная, уксусная, молочная, масляная, щавелевая, янтарная, валериановая и др., также вредных для развития корневых систем растений.

Большое значение в устранении депрессивного эффекта соломы на растения имеет азот. Так называемая азоткомпенасация (внесение азотных удобрений на поле, где остались растительные остатки после уборки предшественника) позволяет значительно уменьшить или исключить депрессивное влияние вытяжки из соломы. Наиболее пригодны для этого аммиачная селитра, КАС, сульфат аммония.

Детоксикация свежей соломы происходит за счет стимуляции азотом микробиологического компонента почвы. При этом условия разложения соломы в почве играют главную роль в характере накопления продуктов разложения органического вещества.

Фитотоксичные соединения, образовавшиеся в аэробных условиях, могут быстрее усваиваться микроорганизмами, быть связанными органическими или минеральными коллоидами либо нейтрализоваться другими соединениями в процессах гумификации.

В анаэробных условиях токсические вещества сохраняются более длительное время, особенно при невысоких температурах и недостатке азота (в холодное время года).

В теории в почву надо вносить в виде удобрений столько питательных веществ, сколько необходимо для создания растениями урожая определенной величины. Но на практике, если внести эти удобрения в живую почву, то под действием микроорганизмов они подвергнутся таким изменениям, что их влияние на урожай будет сильно отличаться от расчетного

Минеральные вещества, содержащиеся в соломе, также влияют на ход процессов разложения, поскольку потребность микроорганизмов в минеральных веществах подобна потребности в них высших растений. Как правило, для нормального разложения содержание минеральных веществ в растительных остатках достаточное, а потому они, в отличие от азота, вряд ли могут лимитировать этот процесс.
Что касается фосфора, то при соотношении 150-200:1 возможно беспрепятственное разложение растительных остатков, поэтому при содержании в них 0,2-0,3% этого элемента можно не опасаться биологического связывания фосфора почвы.

БИОЛОГИЧЕСКИЙ КРУГОВОРОТ ВЕЩЕСТВ

В целом различают следующие процессы, протекающие одновременно и взаимосвязано, в результате которых из горной породы образуется новое самостоятельное природное тело - почва:

1) разложение минералов горных пород и образование новых минералов, а также элементов зольного питания растений в доступных формах;

2) создание органического вещества (на поверхности породы и в ее верхних слоях), его разложение, синтез новых органоминеральных соединений в процессе гумификации и их разрушение, аккумуляция и освобождение элементов зольного и азотного питания;

3) взаимодействие минеральных и органических веществ с образованием органоминеральных соединений разной степени подвижности;

4) перемещение и осаждение в почвенной толще различных продуктов почвообразования - минеральных, органических и органоминеральных;

5) поступление влаги в почву и ее возврат в атмосферу (транспирация и испарение);

6) поглощение лучистой энергии солнца почвой, ее нагревание и излучение энергии, сопровождаемое охлаждением, и другие.

Большая часть перечисленных процессов протекает при участии живых организмов - растений и микроорганизмов. Корни высших растений проникают в породу на значительную глубину, охватывают большой объем породы, извлекая из ее толщи элементы зольной пищи (фосфор, калий, серу и др.) и азот (его присутствие в породе связано с биохимической деятельностью микроорганизмов).

Зеленые растения обладают избирательной поглотительной способностью. Сущность ее заключается в том, что корни растений усваивают химические элементы из почвенного раствора с минимальным содержанием наиболее важных для организмов веществ в присутствии больших количеств остальных соединений. Корни растений как бы переносят элементы питания из нижних горизонтов породы в верхние. Используя углекислый газ воздуха, воду, зольные элементы, азот, энергию солнца, растения синтезируют органическое вещество.

Часто анализ доступных растениям элементов питания в плодородной почве показывает очень низкое их содержание. Судя по анализам, растения должны бы испытывать сильное голодание. Однако дело в том, что на плодородных почвах элементы питания находятся не в почвенном растворе, а в связанном состоянии на почвенных частицах или входят в состав гумуса, минералов и становятся доступными растениям только в результате жизнедеятельности почвенных микроорганизмов.

Этим объясняется также, почему часто не оправдывают себя точно рассчитанные нормы внесения удобрений. В теории в почву надо вносить в виде минеральных удобрений ровно столько питательных веществ, сколько потребляют их растения для создания урожая определенной величины. Но эти расчетные нормы оправдывают себя только на безжизненных искусственных субстратах, которые служат лишь опорой для корней растений!

Если же внести эти удобрения в живую почву, то под действием микроорганизмов они подвергнутся таким изменениям, что их влияние на урожай будет очень далеким от расчетного.

Наряду с созданием (синтезом) органического вещества происходит его разрушение (под воздействием микроорганизмов) с образованием новых минеральных соединений, доступных для следующих поколений растений. Таким образом, между растениями и почвообразующими породами, а затем и почвами возникает круговорот зольных элементов и азота. В результате его действия в верхнем слое почвы происходит постепенное накопление элементов минерального и азотного питания растений - одного из факторов плодородия.

В основе почвообразовательного процесса лежит малый биологический круговорот веществ. Органические остатки, которые накапливаются после отмирания растений на поверхности породы или в ее верхних слоях, минерализуются не полностью, часть их в процессе гумификации превращается в гумус, который содержит все элементы питания. Накопление гумуса в верхних слоях и взаимодействие гумусовых веществ с минеральной частью породы приводят к образованию почвы. Гумус содержится только в почвах, в почвообразующих породах его нет.

Таким образом, сущность почвообразовательного процесса заключается в создании (синтезе) органического вещества и его разрушении, а также во взаимодействии минеральной части породы и почвы с продуктами разложения органических остатков и гумусовыми веществами.

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Читайте также: