Особенности строения бактерий

Обновлено: 24.09.2022

Бактерии являются древнейшими живыми организмами из ныне существующих на Земле. Предполагают, что бактерии появились около 3,5 млрд лет назад и были единственными живыми организмами на Земле около 1 млрд лет.

Бактерии имеют более примитивное строение, чем последующие появившиеся в процессе эволюции организмы. Однако между собой они не однородны по строению, есть как более простые, так и более сложные. Наиболее примитивные бактерии обитают в горячих серных источниках и бескислородном иле в водоемах.

У бактерий нет ядра, поэтому их относят к надцарству прокариоты. Бактерии — это преимущественно одноклеточные организмы. Их клетка намного меньше, чем клетка эукариот (клеток, в которых есть ядро).

Клетки бактерий бывают разными по форме: круглые (кокки), образующие цепочку (стрептококки), палочковидные (бациллы), спиралевидные (спириллы), в виде запятой (вибрионы) и другие. Большинство бактерий палочковидные.

Клетка бактерий сверху имеет клеточную стенку. Она плотная и служит для защиты и опоры, придает бактерии форму. Клеточная стенка бактерий, как и у растений, проницаема в обе стороны: в клетку проходят питательные вещества, из клетки выходят продукты обмена. Сверху клеточной стенки у бактерий вырабатывается слизистая капсула, которая предохраняет бактерии от высыхания. Толщина стенок капсулы может быть очень большой (превышать толщину самой бактерии), но не всегда.

У ряда бактерий на поверхности есть длинные жгутики (один или несколько) или короткие ворсинки. С их помощью бактерии передвигаются.

Цитоплазма бактериальных клеток достаточно густая, неподвижная, со слоистым строением. В отличие от растений у бактерий нет вакуолей, поэтому необходимые для синтеза вещества и запасные питательные вещества находятся прямо в цитоплазме.

Как уже было сказано, бактерии не имеют ядра. Их наследственный материал (ДНК) находится в центральной части клетки не обособлено от остальных структур.

Размножение бактерий осуществляется делением надвое. После этого дочерние клетки вырастают и снова делятся. По скорости своего размножения бактерии превосходят все другие организмы. В благоприятных условиях бактерии могут делится каждые 20 мин, образуя огромные по численности колонии.

При недостатке питательных веществ рост колонии бактерий останавливается. Многие бактерии при этом начинают образовывать споры, которые служат для сохранения особей, а не для размножения. Образуя спору, бактерия вырабатывает очень плотную оболочку. Споры предотвращают высыхание бактерии, способны переносить низкую или высокую температуры. Споры могут сохранять жизнеспособность сотни лет.

Бактерии выделяют в окружающую среду продукты своего обмена веществ, которые могут неблагоприятно влиять на другие организмы.

Некоторые бактерии способны к фотосинтезу, но их не относят к растениям, так как у них нет ядра и по другим признакам есть существенные различия (у бактерий нет хлоропластов, подвижной цитоплазмы, клетки намного мельче и др.).

Ученые «просветили» кишечную палочку

Российские ученые в рамках международного сотрудничества впервые применили метод, позволяющий совмещать визуальные микроскопические наблюдения и регистрацию фотоэмиссионного спектра. Анализ последнего в перспективе поможет построить карту физико-химического состояния поверхности клеток. Исследователи показали это на примере кишечной палочки Escherichia coli, которая является перспективным материалом для развития природоподобных технологий. Исследование поддержано грантом Российского научного фонда. Статья опубликована в журнале Results in Physics.


Изучение природоподобных объектов — активно развивающееся направление науки, использующее биологические материалы. Это, например, технологии получения наноразмерных конструкций на основе ДНК, белковых капсул и конъюгатов, нуклеопротеидных комплексов. Однако для создания подобных объектов необходимо понимание того, как функционирует биологическая система в целом. Также не обойтись без методик тонкого управления составом и структурой этих конструкций.

Одним из наиболее удобных объектов для разработки такого рода технологий являются клетки кишечной палочки E. coli — бактерии, которую легко выращивать в лабораторных условиях. Она синтезирует ферритин-подобные белки Dps, способные накапливать внутри своей глобулы соединения железа фиксированной формы и размером не более пяти нанометров. Для выделения таких молекул можно использовать достаточно длительный и относительно затратный способ, предполагающий несколько видов фракционирования. Однако сами клетки E. coli могут выступать в роли конвейера, своего рода «фабрики» для контролируемого производства, формирования, транспортировки и распределения таких белков, содержащих неорганическое ядро. Тем не менее, открытыми остаются вопросы физико-химического состояния соединений железа, их локального атомного и электронного строения в составе бактериальных клеток в целом и на их поверхности. На данный момент не существует универсальных, точных и химически чувствительных методов исследования микрочастиц на поверхности биологических объектов. Ученые из Воронежского государственного университета совместно с коллегами, в том числе из Балтийского федерального университета имени И. Канта, впервые применили для решения этой задачи высокоразрешающий комплексный метод фотоэмиссионной электронной микроскопии Photo Emission Electron Microscopy (PEEM). Это позволило визуально наблюдать отдельные клетки E. сoli.

«Использование комплекса высокоразрешающих методов рентгеновской фотоэлектронной спектроскопии и растровой электронной микроскопии показало эффективность предложенного подхода. Можно надеяться на то, что РЕЕМ будет применяться для биоимиджинга клеточных объектов с интегрированными неорганическими наночастицами. Это позволит сформировать “карты” неорганических включений клеточной поверхности, то есть получить информацию о том, какие атомы и в каком состоянии локализованы на мембране бактериальной клетки», — отмечает руководитель проекта, доктор физико-математических наук, доцент Сергей Турищев. Метод рентгеновской фотоэлектронной спектроскопии применялся с использованием синхротронного излучения уникальной установки класса «мегасайенс» мирового уровня НИЦ «Курчатовский институт».

«Наши дальнейшие планы состоят, в первую очередь, в попытке увеличения разрешающей способности данного подхода, чтобы иметь перспективу получать максимально детальные данные о поверхности одиночных клеток или отдельных ее участков. Кроме того, хотелось бы рассмотреть возможность применения этого метода не только для бактериальных клеток, обладающих достаточно прочной мембраной, но и для более “нежных” эукариотических», — прокомментировал Сергей Антипов, доктор биологических наук, руководитель научной группы «Молекулярная биофизика и бионанотехнологии» Института живых систем Балтийского федерального университета имени И. Канта.

Исследование проводилось учеными Воронежского государственного университета совместно с коллегами из Берлинского центра материалов и энергии имени Гельмгольца (Берлин, Германия), Института фотонных технологий Лейбница (Йена, Германия), Национального исследовательского центра «Курчатовский институт» (Москва), Института биофизики клетки РАН (Пущино) и Балтийского федерального университета имени И. Канта (Калининград).

Учёные нашли потенциальную цель для революционных антибиотиков

Схематическая структура цитохрома-bd. Цитохром-bd расположен во внутренней бактериальной (цитоплазматической) мембране. Рядом — бактерия кишечная палочка (бактерия встречается с молекулой сероводорода (H2S). Источник: Виталий Борисов


Схематическая структура цитохрома-bd. Цитохром-bd расположен во внутренней бактериальной (цитоплазматической) мембране. Рядом — бактерия кишечная палочка (бактерия встречается с молекулой сероводорода (H2S). Источник: Виталий Борисов

Международная группа ученых при участии исследователя из МГУ имени М.В.Ломоносова выяснила, с помощью какого фермента кишечной палочке удается дышать. Исследование опубликовано в журнале Scientific Reports.

Ученые выяснили, каким образом бактерии кишечной палочки способны выживать в кишечнике человека — ранее вопрос о том, как они дышат, был загадкой для специалистов. Виталий Борисов, ведущий научный сотрудник, доктор биологических наук, профессор РАН, сотрудник НИИ физико-химической биологии имени А.Н. Белозерского МГУ и один из авторов работы, поясняет, что для дыхания кишечная палочка использует особые ферменты, которые отсутствуют в организме человека. Это значит, что открытие ученых может способствовать созданию новых лекарственных препаратов, которые будут губительно действовать на бактерии, не причиняя вреда человеку.

Энергия для жизнедеятельности любого организма поступает с пищей и генерируется при помощи окислительно-восстановительных процессов в организме. Пища в энергию преобразуется не сразу, не напрямую, а через посредников. Сначала сложные молекулы разлагаются на более простые: белки разлагаются до аминокислот, жиры — до жирных кислот, углеводы — до моносахаридов. При окислении более простых молекул выделяется энергия, и вся она оказывается заключенной в электронах.

Электрон передается в дыхательные цепи на так называемые восстановительные эквиваленты (соединения, переносящие электроны). Ими являются НАДН (никотинамидадениндинуклеотид) и убихинол, также известный как коэнзим Q. Эти два основных восстановительных эквивалента полностью справляются с переработкой пищи: НАДН является водорастворимым соединением, а убихинол — жирорастворимым. Мембранные ферменты от восстановительных эквивалентов принимают электроны и передают на молекулярный кислород.

Терминальная цитохромоксидаза — главный мембранный фермент, отвечающий за митохондриальное дыхание человека и, как считалось до этого, за дыхание кишечной палочки тоже. Схема действия оксидаз проста: передавая электроны на молекулярный кислород, восстановительные эквиваленты снова окисляются, в результате чего генерируется «энергетическая валюта» клетки — протон-движущая сила.

«Если перестать дышать, мы умрем именно оттого, что кислород не будет поступать к оксидазе, и она не будет производить энергию», — поясняет Виталий Борисов.

Бактерия кишечной палочки (E. coli) живет в желудочно-кишечном тракте, где вырабатывается много сероводорода, ослабляющего митохондриальное дыхание. Свободный сероводород подавляет работу цитохромоксидазы. Его концентрация в сотни раз превышает минимально необходимую концентрацию для существенной блокировки этого фермента. Казалось бы, это должно означать, что «дышать» бактерия E. сoliне может, но вопреки всему бактерия почему-то выживает в кишечнике. Исследователи предположили, что дыхание в присутствии сероводорода все-таки возможно, но благодаря другой оксидазе. Дело в том, что дыхание у людей и бактерий происходит по-разному. Каждая клетка нашего организма «дышит» благодаря работе только цитохрома-с оксидазы, других у нас нет. А у бактерии кишечной палочки есть оксидазы двух типов: цитохромоксидаза типа bo(аналог «человеческой» цитохром-с оксидазы) и совершенно другие цитохромы-bd.

«Наша гипотеза заключалась в том, что оксидазы типа bd (bd-I и bd-II) более устойчивы к ингибированию сероводородом, чем цитохромоксидаза типа bo», — комментирует Виталий Борисов.

Для проверки данной гипотезы требовалось узнать, как присутствие сульфида в среде влияет на рост клеток бактерии E. coli, у которых в дыхательной цепи имеется только одна из терминальных оксидаз (bd-I, bd-II или bo). В работе использовались различные биохимические, биофизические и микробиологические методы и подходы, а также метод направленного получения мутаций.

Гипотеза полностью подтвердилась. «Активность оксидазы bo ингибируется сероводородом полностью, тогда как на работу оксидаз bd H2S совсем не действует. Таким образом, чтобы успешно производить основные виды «энергетической валюты» в условиях высокого содержания сероводорода, представители кишечной микрофлоры должны задействовать уникальный тип терминальных оксидаз, который отсутствует в клетках человека и животных», — комментирует Виталий Борисов.

Открытие может быть использовано в будущем для создания медицинских препаратов, регулирующих микрофлору кишечника и избавляющих его от вредных бактерий. Поскольку клетки человека не содержат оксидаз типа bd, становится актуальным вопрос о возможности борьбы с болезнетворными бактериями, не причиняя вреда человеческому организму. К примеру, вызывающая туберкулёз бактерия, главным мембранным ферментом которой также является оксидаза типа bd, быстро приобретает устойчивость к классическим антибиотикам. Благодаря настоящему исследованию появилась перспектива создания нового типа антибиотиков, «перекрывающих кислород» только клеткам вредных бактерий, а не клеткам человека.

Раскрыт механизм «обоняния» у бактерий

Учёные из МФТИ в сотрудничестве с коллегами из исследовательского центра Юлих, Института структурной биологии в Гренобле и Европейского центра синхротронного излучения узнали детали механизма работы «обоняния» бактерий. Это удалось сделать благодаря получению структуры белка NarQ из кишечной палочки — представителя универсального класса сенсорных киназ, отвечающих за передачу сигнала об окружающей среде внутрь бактерий. Работа, опубликованная в журнале Science, поможет понять, как бактерии «общаются» между собой и образуют устойчивые группы на стерильных поверхностях или в организме человека.

2017.05.12-2-10003.jpg

На фото: Валентин Борщевский, Иван Гущин и Павел Буслаев, сотрудники Центра исследований молекулярных механизмов старения и возрастных заболеваний МФТИ

Лекарства, влияющие на бактериальное «обоняние» — перспективные заменители современных антибиотиков. Они не убивают бактерии, а лишь подают им сигналы для того, чтобы те стали безвредными для организма. Так как лекарства такого типа не нарушают нормальную жизнедеятельность микроорганизмов, к ним не может выработаться устойчивость, в отличие от классических антибиотиков.

Две компоненты клеточного обоняния

Любая клетка отделена от окружающей среды плотной мембраной, через которую не проходят практически никакие химические вещества. Это позволяет ей держать условия внутри себя постоянными и правильно функционировать. Однако мембрана сильно ограничивает обмен информацией с окружающей средой. Для того, чтобы узнавать о происходящем снаружи, клетка использует особые молекулярные машины — белки. Те из них, что предназначены для общения с окружающей средой, чаще всего «живут» прямо в мембране или около неё, и отвечают за передачу сигналов или химических веществ внутрь клетки или наружу.

Наиболее универсальным механизмом «восприятия» окружающей среды у бактерий являются двухкомпонентные регуляторные системы . Такая система состоит из двух белков: киназы , которая принимает сигнал снаружи клетки и передаёт его вовнутрь, и регулятора , который принимает сигнал внутри клетки и запускает дальнейшие реакции.

Главное — правильно выбрать кадры

Молекулярная фотография

Для понимания работы белков хорошим подспорьем может служить их структура, полученная с атомной точностью. На данный момент большинство белковых структур (более 100 000) получено методом кристаллографии . Суть этого метода заключается в наблюдении картины дифракции от упорядоченных в кристаллическую решётку молекул белка. Однако таким образом можно получить только структуру какого-то одного состояния белка, как на фотографии. Если получится «сфотографировать» начальное и конечное состояния какого-то процесса, можно предположить, как именно работает белок при переключении между этими состояниями.

Мембранные «поршни» двигают/толкают клеточное обоняние

Авторам исследования удалось получить структуру киназы NarQ из кишечной палочки E. coli в двух состояниях. Эта киназа «ощущает» присутствие ионов NO 2 — и NO 3 — в окружающей среде и передаёт сигнал об этом через клеточную мембрану. Оказалось, что белок образует «димер»: два белка работают вместе, чтобы захватить ион. Первое состояние — неактивное , в котором белок не связан с ионом нитрата и не передаёт никакого сигнала. Второе состояние, напротив, активное, или сигнальное: в нём киназа сообщает внутрь клетки о наличии нитратов в окружающей среде.

Структура белка в сигнальном состоянии была получена для наиболее достоверного «дикого» белка: без искусственных мутаций, которые учёные часто используют для того, чтобы повысить стабильность белка. Для получения структуры в неактивном состоянии авторы мутировали место, к которому привязывается нитрат. При этом стабильность белка не была нарушена, однако нитрат перестал присоединяться к нему, давая возможность посмотреть на киназу в неактивном состоянии.

Выяснилось, что сигнальное и неактивное состояния отличаются в месте связывания нитрата совсем немного, на 0,5-1 ангстрема (примерно одна пятая размера самого иона; 1 ангстрем — 10 -10 метра). Однако присоединение этого иона посередине между двумя киназами вызывает каскад изменений в белке: сначала, как поршни, сдвигаются трансмембранные спирали разных мономеров. Эти «поршни»передают небольшое изменение в 0,5-1 ангстрема через мембрану, и их внешние концы при этом раздвигаются на ~2.5 ангстрем в разные стороны. На выходе из мембраны, в НАМР-домене, продольные сдвиги спиралей конвертируются во вращение двух частей сенсора друг относительно друга. Эти сдвиги в итоге изменяют положение спиралей регулятора на целых 7 ангстрем, завершая передачу сигнала.

Кроме структур, в которых два белка образуют пару — димер, симметричную относительно центральной оси, учёным удалось получить структуру с асимметричным положением двух белков в паре. В этом состоянии белок «уложен» в кристалле иначе и сильно изогнут. Однако все спирали смещены так, что воздействие на внутриклеточную часть белка почти не меняется. Подобная универсальность открытого движения позволяет сказать, что механизм передачи сигнала универсален, и для того, чтобы «ощутить» другие химические соединения, достаточно будет изменить только внешнюю часть рецептора, не меняя при этом «поршневой» механизм.

«Передача сигнала через клеточную мембрану — один из фундаментальнейших вопросов современной биологии. В этой работе мы в деталях показали, как сигнал (в данном случае, связывание нитрата) может передаваться на сотни ангстрем внутрь клетки — бактерий и архей, а также грибов и растений. Понимая механизмы передачи сигнала более полно, мы можем рассчитывать в будущем научиться манипулировать такими клетками, и в частности ослаблять или нейтрализовать вредные эффекты патогенных микроорганизмов» , — комментирует исследование Иван Гущин , заведующий лабораторией структурного анализа и инжиниринга мембранных систем МФТИ и, на момент написания статьи, также сотрудник Исследовательского центра Юлих.

Палочковидные бактерии


Палочковидные бактерии – это бактерии, клетки которых характеризуются цилиндрической формой и сильно различаются отношением длины клетки к размеру ее поперечника, вплоть до нитевидных форм с длинной клетки до 1 см [3] [2] [1] .

Палочковидные бактерии

Палочковидные бактерии - Палочковидные бактерии

1. Коринебактерии дифтерии.

Клетки бактерий могут иметь разнообразную форму. Основные формы: кокки, палочковидные бактерии, извитые бактерии [3] .

Типы палочковидных бактерий

Палочковидные бактерии делятся только в одной плоскости – перпендикулярно оси цилиндра. При этом могут формироваться:

  • монобактерии – клетки расположены по одиночке;
  • диплобактерии – клетки образуют пары;
  • стрептобактерии – клетки образуют цепочки [2] .

Кроме того, скопление клеток палочковидных бактерий может формировать образования по форме напоминающие частокол или розетку [1] .

Концы клеток палочковидных бактерий могут быть обрезанными, как у палочки сибирской язвы, заостренными (фузобактерии), закругленными (кишечная палочка) или напоминающие булаву (коринебактерии дифтерии) [1] .

1. Образующие эндоспоры – бациллы (от латинского bacillus – палочка). Такие бактерии различаются по форме клеток, обусловленной размерами и местом расположения спор. Различают:

  • собственно бациллы – спора расположена в центре клетки, диаметр ее не превышает диаметр клетки;
  • клострии (от латинского closter – веретено) – спора расположена в центре клетки, но диаметр споры превышает диаметр клетки. Это формирует веретеновидную форму бактерии;
  • плектридии – спора расположена в конце клетки, из-за этого последняя принимает вид барабанной палочки или теннисной ракетки [3][1] .

2. Не образующие спор – семейство Псевдомонадовые (Pseudomonadaceae), кишечные палочки, сальмонеллы, палочки протея и прочие [1] .

Палочковидные клетки могут иметь на концах зерна полифосфатов, как возбудители дифтерии, относящиеся к роду коринебактерии [1] .

Палочковидные бактерии, могут образовывать ветвистые формы. Такие бактерии относятся к микобактериям (актиномицеты, бифидобактерии, микобактерии туберкулеза) [1] .

Значение палочковидных бактерий

Палочковидные бактерии – самая многочисленная группа бактерий. Клетки такой формы имеются у железобактерий, бесцветных серобактерий и многих других [3] .

Палочковидную форму клетки имеют многие патогенные бактерии – кишечные палочки, сальмонеллы [1] .

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Читайте также: